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In this note, it is shown that, for an arbitrary semi-infinite convex program, there
exists a countable subcollection of the constraints which gives the primal program
and whose dual gives the original dual value. © 1985 Academic Press. Inc.

1. INTRODUCTION

Whenever we find ourselves confronted with a semi-infinite program, it is
reasonable to want to immediately say that, without loss of generality, we
may assume that the number of constraints is countable. As Example 2.2
illustrates, this reduction is not as easy as selecting a countable number of
the constraints which gives the feasible region of the primal program. The
problem lies with the dual value. Here we show that there always exists a
countable subcollection of the constraints which gives an equivalent primal
program and yields the correct dual value. We conclude by citing con­
ditions under which every countable subcollection of the constraints, which
gives an equivalent primal program, gives the same dual value.

2. THE RESULT

Consider the semi-infinite convex program 9 which seeks

(9)
A9 = infj(x)

s.t.g;(x)~O; iEI
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and its formal Lagranian dual E0 which seeks

AE0 = sup inf L(x, A)
.l x

(E0) S.t.A~O

AEA.

In the above formulation, x E W, the functions j and g; for all i E I are
closed proper convex, the cardinality of the index set I is infinite,

A = {(A;);EI I A;#O for only finitely many i}

and

jE I

It now follows directly, from the separability of IRP, and the fact that
each closed proper convex function is the supremum of its affine minorants,
that there exists a countable subset 10 c I satisfying

In other words, the program &'(10) which seeks

(2.1 )

A&'(lo) = infj(x)

is equivalent to f!J. As the next example illustrates, different choices of 10

satisfying (2.1) can result in different values for AE0(1o).

EXAMPLE 2.2.

infexp( -y)

subject to (x 2+ y2) 1/2 - X~ 0

x ~ y for all y< O.

y ~ J1 for all J1 > O.

Let II be those indices of I which correspond to

(x2+ y2) 1/2 - X~ 0

x~ -1/i; i=2, 3, ...



i=2,3, ....

COUNTABLE SUBSET OF THE CONSTRAINTS

and let 12 be those indices of I which correspond to

(X2+y2)1/2_X~0

1
Y~""7;

I

71

Since (x2+y2)1/2 - X~ 0 implies y = 0 and x ~ 0, both II and 12 satisfy
(2.1). However, .,/(~(Id = 0 while .,/(~(I2) = 1. The first statement follows
from the fact that infx,y L(x, y, A) > -00 if and only if A= (AI' 0, 0,... ). The
second from the facts that, for n ~ 2, infx,y L(x, y, An) = exp( -lin), where
An = (0,...0, An = exp( -lin), 0... ) and that .,/(~(I2)= 1. (For more on ~(I2)

see [2,5].)
Note, in the above example, that .,/(~(I2)= .,/(~. As seen in the next

theorem, this is not an accident.

THEOREM 2.3. Given a semi-infinite program ~ with the number of con­
straints, I, uncountable, there exists a countable subset 10 of I with the
following properties:

(2.1 )

(2.4 )

(2.5)

Proof Let 10 be a countable subset of I satisfying (2.1) and (2.4). If
.,/(~ = -00, then (2.5) also holds for 10 since .,/(~(Io) ~ .,/(~.

Now assume that .,/(~ is finite and let k be a fixed positive integer. Then
there exists a Ak feasible for ~ with infx L(x, Ak

) ~.,/(~ - k- I
• With this A\

construct a countable subset Ik of I by adding to Ik_1 those i in l\!k_1 for
which A~ # O. Let J = U'k=o Ik • Then J is countable since each Ik is and J
satisfies (2.1) and (2.4) since each I k does. Lastly, "/(~(J)="/(~ since for
k~ 1, .,/(~(h)~"/(~-k-I by construction.

Finally, if .,/(~ = +00, repeat the above argument with k in place of
"/(~-k-I. I

DEFINITION. A countable subset 10 of I is essential iff it satisfies proper­
ties (2.1), (2.4) and (2.5).

The conclusion of the above theorem can now be sharpened in the case
that f!J satisfies a general condition which implies .,/(f!J = .,/(~, for instance,
when the feasible region of~ is nonempty and bounded (for this condition,



72 D. F. KARNEY

see [4]. For other conditions, see [1,3,6]). In this case, all subsets /0
satisfying (2.1) are essential. This follows directly from the fact that
.ltfYJ(/o) = .It!?2(/o) for all such /0'

In [6], this last observation is utilized to derive a general duality result
for the finite subprograms of fYJ associated with each /0'

REFERENCES

1. J. M. BORWEIN, The limiting Lagrangian as a consequence of Helly's theorem, J. Optim.
Theory Appl. 33 (1981), 479-513.

2. R. J. DUFFIN, Convex analysis treated by linear programming, Math. Programming 4
(1973), 125-143.

3. R. G. JEROSLOW, Uniform duality in semi-infinite convex optimization, Math. Programming
27 (1983),144-154.

4. D. F. KARNEY, Clark's theorem for semi-infinite convex programs, Adv. in Appl. Math. 2
(1981), 7-12.

5. D. F. KARNEY, A pathological semi-infinite program verifying Karlovitz's conjecture, J.
Optim. Theory Appl. 38 (1982), 137-141.

6. D. F. KARNEY, A duality theorem for semi-infinite convex programs and their finite sub­
programs, Math. Programming 27 (1983), 75-82.


